
Written Exam at the Department of Economics

Winter 2019–20

Advanced Microeconometrics

Final Exam

— Suggested Answers —

Problem 1

Consider the following censored regression model, for a sample of individuals

i = 1, . . . , N :

yi = max{0, y?i }, y?i = x′iβ + εi, εi ∼ N
(
0, σ2

)
, (1)

where the explanatory variables are contained in the K × 1 vector xi, and are

related to the latent variable y?i through the vector of regression coefficients β.

Question 1.1: Discuss briefly the identification of the model (without any

derivations). In particular, explain if σ2 is identified, and why.

Suggested answer

Given the functional form assumptions, both β and σ2 are separately iden-

tified due to the observed continuous variation in yi when y?i > 0. Similar

to Probit we have that Pr(y?i > 0|xi) = Φ(x′iβ/σ) and Pr(y?i ≤ 0|xi) =

1−Φ(x′iβ/σ) and hence the observed fraction of censored/uncensored con-

ditional on xi identifies β relative to σ. Note that this is all we can hope

to identify in the Probit model since we only observe a binary indicator

whether y?i > 0 or not. However, in the censored regression model we do

observe the latent variable y?i for the uncensored observations (i.e. when

y?i > 0) allowing us to identify σ separately from β. Specifically, the

density of observed variable yi given xi is

f(yi|xi) = [1− Φ(x′iβ/σ)]1(yi=0)
[
(1/σ)φ[(yi − x′iβ)/σ]

]1(yi>0)
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which clearly depends on σ separately from β.

Given the structure of the model and identification of σ and β we have fully

specified the the entire conditional distribution of both yi and y?i . How-

ever, identification as well as the consistency of the maximum likelihood

estimator derived from the Tobit model hinges crucially on distributional

assumptions made here (such as normality and conditional independence

of εi given xi). Violation of these assumptions generally leads to inconsis-

tent maximum likelihood estimates. In contrast, non-normality and het-

erosceddstisty does not affect identification and consistent estimation of

parameters in the linear regression model without censoring. So censoring

is costly.

We have also assumed that the truncation point is fixed at zero, but if for

example yi = max{x′iγ, x′iβ + εi} we would only be able to identify β − γ
since this is observationally equivalent model with a fixed truncation point

0 and the latent variable y?i = x′i(β − γ) + εi

Question 1.2: Show that the conditional expectation of the observed out-

come is

E[yi | xi] = x′iβ Φ

(
x′iβ

σ

)
+ σ φ

(
x′iβ

σ

)
, (2)

where Φ(·) and φ(·) denote, respectively, the cumulative distribution

function(CDF) and the probability density function (PDF) of the stan-

dard normal distribution N (0, 1).

Hint 1: To get started, remember that E[yi | xi] =

E[yi | xi, yi = 0] Pr(yi = 0 | xi) + E[yi | xi, yi > 0] Pr(yi > 0 | xi).

Hint 2: If z ∼ N (0, 1), then for any constant α ∈ R it holds that

E[z | z > α] = φ(α)/[1− Φ(α)].

Suggested answer

By the law of iterated expectations we can write

E[yi | xi] = E[yi | xi, yi = 0] Pr(yi = 0 | xi)+E[yi | xi, yi > 0] Pr(yi > 0 | xi) .
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Clearly E[yi | xi, yi = 0] = 0 and yi = y?i conditional on yi > 0, so we have

E[yi | xi] = 0 + E[yi | xi, yi > 0] Pr(yi > 0 | xi)

= E[y?i | xi, y?i > 0] Pr(y?i > 0 | xi)

= E[x′iβ + εi | xi, x′iβ + εi > 0] Pr(x′iβ + εi > 0 | xi)

where εi | xi ∼ N (0, σ2) implies that Pr(x′iβ + εi > 0 | xi) = Φ(x′iβ/σ) and

that εi is independent of xi. Independence implies that we can remove the

conditioning on xi in the conditional expectation of εi

E[yi | xi] =
(
x′iβ + E[εi | x′iβ + εi > 0]

)
Φ(x′iβ/σ)

= x′iβΦ(x′iβ/σ) + σE[εi/σ | εi/σ > −x′iβ/σ] Φ(x′iβ/σ)

where E[εi/σ | εi/σ > −x′iβ/σ] is the mean of a truncated standard normal

distribution with truncation point −x′iβ/σ. It therefore holds that

E[εi/σ | εi/σ > −x′iβ/σ] = φ(−x′iβ/σ)/[1− Φ(−x′iβ/σ)]

= φ(x′iβ/σ)/Φ(x′iβ/σ)

where the last equality follows from the symmetry of the standard normal

distribution.

We then have

E[yi | xi] = x′iβ Φ

(
x′iβ

σ

)
+ σ φ

(
x′iβ

σ

)

Question 1.3: One of your colleagues suggests you construct an estimator of

θ = (β′, σ2)′ based on the following optimization problem:

θ̂ = arg min
θ

[
1

N

N∑
i=1

m̂(yi, xi; θ, uiM)

]2
(3)

where m̂(yi, xi; θ, uiM) is simulated using a sample of M random draws

uiM = {u(1)i , . . . , u
(M)
i } from the standard normal distribution, for each

i = 1, . . . , N .

Describe the principle of the estimation method your colleague is refer-

ring to. As part of your answer, you are expected to provide and justify a
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possible expression of m̂(yi, xi; θ, uiM) [hint: you may or may not use the

result in Eq. (2) to do this], and to outline the steps of the corresponding

estimation approach.

Suggested answer

The principle of the estimation method the colleague is referring to is the

Method of Simulated Moments (MSM) estimator.

A possible choice would be to rely on the moment condition

E[m(yi, xi; θ)] = E[yi − g(xi; θ)] = 0

where g(xi; θ) is an expression for the conditional mean E[yi | xi] derived

from the model.

Suppose first that the expression for E[yi | xi] in Eq. (2) is unknown, we

could simulate data from the model to obtain

ĝ(xi; θ, uiM) = 1/M
M∑
m=1

max{0, x′iβ + σu
(m)
i }

so that the expression for m̂(yi, xi; θ, uiM) becomes

m̂(yi, xi; θ, uiM) = yi − 1/M
M∑
m=1

max{0, x′iβ + σu
(m)
i }

where we note that m̂(yi, xi; θ, uiM) is an unbiased simulator for m(yi, xi; θ)

in the sense that E[m̂(yi, xi; θ, uiM)] = E[m(yi, xi; θ)].

We would then solve the minimization problem in Eq. (3) holding fixed

the simulation draws for each evaluation of the objective function as we

search over the parameter space.

A potential challenge with this particular choice of simulated moment is

that the simulator is not smooth since the max operator introduces a kink

in the truncation point. This makes the problem locally non-differentiable

with a finite number of observations and simulation draws. We can ame-

liorate these problems by using gradient free optimization routines such as

Nelder-Mead, or by introducing artificial smoothness by replacing the max

operator by it’s logit smoothed version (the so called ”log-sum formula”).
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The problem is reduced in larger samples and for large values of M .

Alternatively, we could simply estimate θ using Method of Moments (MM)

or Nonlinear Least Squares (NLS) since the nonlinear regression function

E[yi | xi] = g(yi, xi; θ) in Eq. (2) is available in closed form.

g(yi, xi; θ) = x′iβ Φ

(
x′iβ

σ

)
− σ φ

(
x′iβ

σ

)
so that

θ̂MM = arg min
θ

[
1

N

N∑
i=1

yi − g(yi, xi; θ)

]2
or

θ̂NLS = arg min
θ

1

N

N∑
i=1

[yi − g(yi, xi; θ)]
2

In the Tobit example with normally distributed independent errors there

is no reason to use simulation to approximate the moment condition since

we express m(yi, xi; θ) in closed form. However, MSM easily gives the flex-

ibility of choosing other moments that does not rely on the distributional

assumptions or allow for a more flexible specification of the distribution of

the error term.

Question 1.4: How do you recommend to choose the number of random

draws M in Question 1.3? In particular, explain how this number affects

the bias of the estimator (no derivations required).

Suggested answer

Given that m̂(yi, xi; θ, uiM) is an unbiased simulator for m(yi, xi; θ) the

MSM estimator is asymptotically equivalent to the MM estimator as M

increase without bound. However, the MSM estimator has the remarkable

property of being consistent even for M = 1. While there is an efficiency

loss of finite M because of simulation noise, it disappears as M → ∞.

In the special case of a frequency simulator the variance is inflated by the

factor (1+1/M), so that Vy,u(m̂(θ)) = (1+1/M)Vy(m(θ)). Hence, in larger

samples simulation variance is also expected to be smaller. The only cost
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of increasing M is computational, so the choice of M is really a tradeoff

between patience and computational power and the overall (simulation

inflated) variance.

Question 1.5: How would you modify the optimization problem in Eq. (3)

to improve the efficiency of the estimator θ̂? Describe briefly the corre-

sponding approach.

Suggested answer

The most efficient estimator is obviously the Maximum Likelihood estima-

tor (MLE) which is readily available given the model assumptions. But

there are several other ways of improving efficiency if you prefer a moment

based estimator and are not willing to impose the necessary distributional

assumptions or because MLE is intractable. One improvement could for

example be to use importance sampling or variance reductions techniques

such as antithetics, Halton sequences or Sobold draws to reduce simulation

noise for MSM.

Here we focus on how we can improve efficiency by including more mo-

ment conditions and weight them optimally. Hence, we may consider the

estimator

θ̂ = arg min
θ

[
1

N

N∑
i=1

zim̂(yi, xi; θ, uiM)

]′
WN

[
1

N

N∑
i=1

zim̂(yi, xi; θ, uiM)

]

where zi is a r dimensional vector of instruments and WN is a (r × r)

symmetric positive definite weighting matrix. WN is possibly stochastic

with finite probability limit and does not depend on θ and the subscript

N on WN is used to indicate that its value may depend on the sample.

Different choices of weighting matrix WN lead to different estimators that,

although consistent, have different variances if the number of moment

restrictions r, exceeds the number of parameters, q. A simple choice is

to let WN be the identity matrix. However, the optimal GMM estimator

weights the moments with the inverse of the variance matrix of the sample

moment conditions. Intuitively, this makes a lot of sense since we would
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like to put more emphasis on moments that are more precisely estimated

(i.e. has lower variance).

Problem 2

Consider the following two-parameter model

y ∼ N (θ1 + θ2, 1) , (4)

with prior distributions θ1 ∼ N (µ1, σ
2
1) and θ2 ∼ N (µ2, σ

2
2).

Question 2.1: Derive the conditional distributions p(θ1 | θ2, y) and p(θ2 |
θ1, y).

Hint: Given the symmetry of the problem, you need to do the derivations

only once.

Suggested answer

Prior distribution:

p(θ1) ∝ exp

{
− 1

2σ2
1

(θ1 − µ1)
2

}
Likelihood:

p(y | θ1, θ2) ∝ exp

{
−1

2
(y − θ1 − θ2)2

}
Posterior, applying Bayes’ theorem:

p(θ1 | θ2, y) ∝ p(y | θ1, θ2)p(θ1),

∝ exp

{
−1

2
(y − θ1 − θ2)2

}
exp

{
− 1

2σ2
1

(θ1 − µ1)
2

}
,

∝ exp

{
−1

2

[
θ21

(
1 +

1

σ2
1

)
− 2θ1

(
y − θ2 +

µ1

σ2
1

)]}
,

which is the kernel of the following normal distribution:

θ1 | θ2, y ∼ N

((
1 +

1

σ2
1

)−1(
y − θ2 +

µ1

σ2
1

)
,

(
1 +

1

σ2
1

)−1)
,
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or, equivalently:

θ1 | θ2, y ∼ N
(
µ1 + σ2

1(y − θ2)
1 + σ2

1

,
σ2
1

1 + σ2
1

)
.

Similarly, due to the symmetry of the problem we obtain

θ2 | θ1, y ∼ N
(
µ2 + σ2

2(y − θ1)
1 + σ2

2

,
σ2
2

1 + σ2
2

)
.

Question 2.2: Outline the different steps of a Gibbs sampler that can be

designed to produce random draws from the posterior distribution of θ1

and θ2. Be as precise as possible.

Suggested answer

Set a starting value θ
(0)
2 , either fixed to a given value or sampled from the

prior (note that θ1 does not need to be initialized, as it is updated first in

the Gibbs sampler).

Repeat the following two steps, for each MCMC iteration t = 1, . . . , T ,

and until practical convergence of the sampler:

1) Sample θ
(t)
1 from p(θ1 | y, θ(t−1)2 ).

2) Sample θ
(t)
2 from p(θ2 | y, θ(t)1 ).

Using the conditional distributions derived in Question 2.2.

Question 2.3: Assuming we observe y = 4 and we set µ1 = µ2 = 50 and

σ2
1 = σ2

2 = 100, we run the Gibbs sampler derived in Question 2.2 for

1,000 iterations. The corresponding trace plots of the two parameters θ1

and θ2, as well as the trace of their sum θ1 + θ2, are shown in Fig. 2.1.

Does the algorithm converge in any sense? Comment on the trace plots

and explain the results, both intuitively and formally.

Suggested answer

The Gibbs sampler does not converge for θ1 nor for θ2, but does for the

sum θ1 + θ2. This is because only the mean of the normal distribution

specified for y in Eq. (4) is identified, but not the individual parameters
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θ1 and θ2 — it is possible to transform these parameters as θ̃1 = θ1 + c

and θ̃2 = θ2 − c, for any constant c ∈ R, without changing the mean of

the normal distribution, i.e., without changing the likelihood. This lack of

identification translates into a lack of convergence of the Gibbs sampler for

the corresponding two parameters taken separately. Their sum, however,

is not affected by this problem, as it is identified.
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Figure 2.1: Trace plots of the Gibbs sampler for the parameters θ1, θ2, and
their sum θ1 + θ2.
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Problem 3

Consider the following MATLAB functions:

1 function [x] = simul1(n, fun, a, b)

2 z = betarnd(a, b, n, 1);

3 x = mean(fun(z));

4 end

5

6 function [x] = simul2(n, fun, a, b)

7 z = rand(n, 1);

8 x = mean(fun(z) .* betapdf(z, a, b));

9 end

and the following piece of code:

1 rng(123);

2 h = @(x) (x - 3).ˆ2;

3 n = 10000;

4 fprintf('simul1 output = %6.4f\n', simul1(n, h, 2, 3));

5 fprintf('simul2 output = %6.4f\n', simul2(n, h, 2, 3));

which produces the following output:

1 simul1 output = 6.7954

2 simul2 output = 6.7502

Question 3.1: Express in mathematical terms what these two functions do.

You should just provide a few equations to answer this question. Be

explicit about the notation.

[Note: The MATLAB function betarnd(a, b, m, n) produces a m × n
matrix of random draws from the Beta distribution with shape parameters

a and b, while the function betapdf(z, a, b) returns the probability

density function of the corresponding Beta distribution evaluated at each

entry of z.]
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Suggested answer

The first function x=simul1(n, fun, a, b) returns

x = 1/n
n∑
i=1

h(zi)

where zi ∼ Beta(a, b)

That is simul1, first takes n independent random numbers from the Beta

distribution with parameters specified by the inputs a and b and saves

them in to the n× 1 vector z = (z1, . . . , zn)′. It then evaluate the sample

average of a function, h(zi) over these draws. The input argument fun is

a function handle that points to a vector function h(x) that for each value

zi computes the function h(zi).

For example simul1(10000, @(x) (x - 3).^2, 2, 3) returns

x = 1/10000
10000∑
i=1

(zi − 3)2

where zi ∼ Beta(2, 3)

The second function simul2(n, fun, a, b) returns

x = 1/n
n∑
i=1

f(zi; a, b)h(zi)

where zi ∼ U(0, 1)

where now z1, . . . , zn are n are independent random numbers from the

uniform distribution on the unit interval and f(zi; a, b) is the pfd of the

Beta distribution with parameters a and b. The inputs are the same as

above.

Question 3.2: Explain precisely the two approaches implemented by the func-

tions simul1() and simul2(), and why the corresponding results look

similar.
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Suggested answer

For large n, both these Matlab functions approximate the mean of a spec-

ified function h(z) of beta distributed random variables, i.e. E[h(z)] for

z ∼ Beta(a, b).

The first MATLAB function simul1() implements a simulator that ap-

proximates E[h(z)] by direct Monte Carlo integration

xSimul1 = 1/n
n∑
i=1

h(zi) −−−→
n→∞

E[h(z)] =

∫ 1

0

h(z)f(z; a, b)dz

where z1, . . . , zn are n are independent random numbers from the Beta dis-

tribution with parameters a and b, density f(z; a, b) and bounded support

on the unit interval [0, 1]. Here convergence of the average to it’s expected

mean is a simple application of the law of large numbers.

The second MATLAB function simul1() implements a simulator that

approximates E[h(z)] using importance sampling. We have

E[h(z)] =

∫ 1

0

h(z)f(z; a, b)dz =

∫ 1

0

h(z)f(z; a, b)

p(z)
p(z)dz

Using Monte Carlo integration we can approximate the integral by

xSimul2 = 1/n
n∑
i=1

h(z)f(z; a, b)

p(z)
−−−→
n→∞

E[h(z)]

where z1, . . . , zn are n are now independent random draws from the p(z)

rather than from the beta distribution, f(z; a, b); and where p(z) has the

same support as the original domain of integration (i.e. [0, 1] in this case).

In simul2() we have set p(z) to be the uniform distribution, which has

same support as beta [0,1] and density 1 over the unit interval, ie. p(z) = 1.

One advantage of this approach is that we are not required to draw from

the distribution of interest; in this case the beta distribution. Instead we

should be able to draw from p(z).
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